All Is Grist 2

Piensas al azar.
  • Turns out I was wrong, here, when I corrected the grammar in that line in Snow Falling on Cedars. Every other criticism of that flabbergasting douchebaggery stands—like that aware means "pathos" not "beauty"—but apparently the grammar itself was not incorrect, just a bizarre idiom that I was not acquainted with till I came across mention of the Japanese book-listing SF ga yomitai! on Mike Flynn's blog.

    Normally the "ga" particle means nominative, but in some instances, apparently, it's used to mean a passive (without using the passive verb conjugation). I suppose it's kind of like how "se habla español" literally means "Spanish speaks itself" rather than, what it means idiomatically, "Spanish is spoken" or "one speaks Spanish".
  • I know I've mentioned that the zled for "damn" is "drown it in hell", and their image (not doctrine) of hell is an infinite water-filled void you sink through forever. This was for two reasons. One, of course, was just that I wanted an alternative to the usual fiery or frozen hells of human cultures. The other was an interesting fact I came across.

    Do you remember in the Disney Peter Pan when Captain Hook is threatening Tiger Lily with drowning, and says "There is no path through water to the Happy Hunting Ground"? That was a real Ojibwa belief (so is Peter losing the shadow, at the beginning—J. M. Barrie seems to have got hisself a book from somewheres).

    What's really weird is, it was also a Náhuatl belief—Tlaloc had to construct an afterlife for those who died by water, they were barred entry to Mictlan. I think something similar shows up in a bunch of other New World cultures, as well; it's kinda a thing, here, that drowning is "a fate worse than (dry) death".
  • When people, rightly objecting to political correctness, say that calling people from East Asia "Asians" rather than "Orientals" is silly, because "Asian" covers everywhere from the Middle East to Kamchatka, they actually embarrass themselves, and play into the hands of the PCniks.

    Because quick, what is the point furthest east that the "Orient Express" traveled to? Oh. Right. Istanbul. What state does the phrase "oriental despotism" originally refer to? Oh. Right. Ottoman Turkey. Remember, when the German Empire complained in World War I that the Allies, by allying with Russia, were binding themselves to a "semi-oriental" power, what was Chesterton's comeback? Oh. Right. That by allying with Ottoman Turkey, Germany was binding itself to a power entirely oriental.

    The fact, kiddies, is that "oriental" and "Asian" are entirely co-terminous terms. "Oriental" just sounds old-fashioned, which is the only reason I say "Asian" instead (well, and a slight preference for avoiding unnecessary fights with idiots).
  • There's an anime this season, Charlotte, that's...well, for about eight episodes, it's pretty good. Then it decides to turn into a wan "Days of Future Past" knockoff, only with even stupider decision-making. At least they're on the run from organizations that want to use their powers, rather than the "bigotry" of people worried about guys who can topple buildings with their minds.

    Nevertheless, very disappointing; it develops all these characters and then ignores two-thirds of them almost completely for the last third of the series. What is it about the concept of people with superpowers that makes it so hard to get stories that involve that topic right? You could at least knock off something other than an X-Men arc that'd recently been made into a major movie.
  • It's hard to be sure, because I can't get that good of a look, but I think that the Minority Report series may be continuing the movie's tradition of cutting-edge production design. Specifically, I think the soldiers here and there in the crowd scenes have a version of digi-camo that's based on a hexagons, not squares.

    Yeah, I know, "hexagons are high-tech" is arguably overplayed, but it's that way for a reason. Namely, it looks freaking awesome. Besides, it could well be that the hexagons are dictated not just by Rule of Cool, but could be diagetic—there could be a structure built into the uniform, perhaps making it a cloth armor, that has hexagonal cells.

    Should we be worried that this show's on Fox? I know I said "with robots" but it really could be that they hate good science fiction, period (which, again, has nothing to do with Firefly).
  • According to "Recoil Considerations for Railguns" by Eric L. Kathe, recoil force is an order of magnitude lower than the "ballistic loads", which I think means your recoil energy is one-tenth your muzzle energy (as a rule of thumb). Which presumably means that the 1% c, 4-gram projectile (muzzle energy of 4.3 tonnes TNT) only has the recoil force of 430 kilos of TNT, which a soft recoil system reduces to 215 kilos. Still not something you really want hitting the front of your ship every time it fires its gun, though, especially not at 4,000 rounds per minute, so, still gonna go with topological inertial protections.

    It occurs to me they might want to upgrade the muzzle velocity, since the zled ships themselves move at 1% c. Maybe 2% c? That brings the muzzle energy to (22=)4 × 4.3=17.18 tonnes TNT. That means you've got 1.72 tonnes TNT recoil force, only reducible to 859 kilos with a soft-recoil system, so the topological inertial protection is even more necessary. It also makes you as well-equipped to fight zled ships as someone shooting at F-35s with a Vulcan. A muzzle velocity twice the speed of your typical target is probably pretty typical for weapons in aerospace applications (although then again, the Goalkeeper CIWS does shoot rounds that are only 30 m/s faster than the missiles it shoots down).
  • You can express firing-rates in Hertz. For instance, the M61 Vulcan, with a fire-rate of 6,000-6,600 rounds per minute, fires at a frequency of 100-110 Hertz. 110 Hertz is the key of A2. The GAU-8 Avenger has a fire-rate of 4,200 rounds per minute, which is 70 hertz—just slightly higher than C#2/D♭2, while the GAU-12 Equalizer can fire at the same rate as the GAU-8, or, in the GAU-"22/A" on the F-35, at 3,300 rounds per minute, which is 55 Hertz, A1.

    The Gryazev-Shipunov GSh-6-30 has a fire-rate of 4,000 to 6,000 RPM, which is 66 and two-thirds Hertz to 100 Hertz, just above C2 ("low C") and a bit above G2, respectively. The Gryazev-Shipunov GSh-6-23 has a crazy-town 9,000 to 10,000 rounds-per-minute fire-rate, 150 Hertz to 166 and two-thirds Hertz—so it fires halfway between D3 and D#3, or else a little above E3.

    So basically all aircraft autocannons are still pretty much playing bass—which is interesting, because the guns themselves sound like buzzsaws (which might be the mechanism spinning the gun as distinct from just the firing).
  • John W. Campbell apparently said, and encouraged his writers to remember, that "an alien thinks as well as a human, but not like a human". Only, one, most aliens don't, actually; the only ones I can think of who actually think as well as humans but not like humans are Cherryh's kif and atevi, and both of them are probably unrealistic (because the kif probably wouldn't become sapient and the atevi seem to often find things troublesome that are actually easily explained—given that "society" is treating unrelated conspecifics as kin, in the first place, "you guys are like my kin though we share no blood" is not something that anyone who has a society should find terribly difficult). Races like Kzinti are actually stupider than humans; many if not most aliens have blind-spots no human society ever had. And every attempt at a "really alien" alien is usually less like a character than it is like a prop (a distinction I get from John Wright).

    And the second point is, who told Campbell there was more than one way to think? I am at least passingly familiar with four Native American/American Indian philosophies and five Old World ones, they are not actually any different from each other—nothing in Navajo thought is not found in China or the pre-Socratics, the Sioux are Platonic hyperrealists, the Nahuatls and Hopi are almost down-the-line Chinese philosophers. Existentialism, Buddhism, Chinese thought, Aristotle, and Plato are all recognizably talking about the same things, albeit coming to different conclusions on some of the questions. Why it's almost like philosophy deals with an external reality and therefore only certain interpretations of it are actually tenable! Besides, remember, Campbell was one of the rubes who fell for Sapir-Whorf. The fact is that nobody that humans can talk with at all is going to think that differently from a human; and the only people humans can't talk with at all, are probably not remotely the same kind of thing humans are. Sure, maybe energy beings are difficult for humans to talk to (if they even talk), but another animal that evolved from some other rock's pond-scum? Give us some time, we'll figure it out.

    Honestly the biggest barrier might be needing some way to simulate their vocal apparatus, if their language even uses sounds—but sign-language is not fundamentally a different thing from spoken language. If the alien communicates with flashing bioluminescence, you're still going to have patterns of flashing lights you can classify as "nouns" and "verbs" (though a lot of the nouns might be verbs morphologically, and all of the adjectives might be).


Sierra Foxtrot 7

Pensées sur l'SF. 553 is 7 × 79, and the sum of nine consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • Realized I had had space-combats take place at the top speeds of spaceships, which...malarkey. At 7.5% c, which is what my humans' starships do, you cross one light-second in 13 and one-third seconds. At the speed of zled starships, 12% c, it's only 8 and one-third. That's not a lot of time to fight, and if your enemy manages to hit you with a few 100-gram rounds, each will hit like a 6-kiloton W54 tactical nuke.

    So I decided that ships only speed up to their top speed when they're making the dozens-of-AUs trip to safe space-fold distance, and the first thing they do when they fold into a system is decelerate to "tactical" speed. That makes parasite craft make much more sense, especially for the humans; the motherships can save their propellant for carting their parasites around, and leave the combat maneuvering to the parasites. The parasites, likewise, are usually launched via catapult, and mostly use their engines for high-G maneuvering (decided their crews are in tanks of acceleration gel, since they're too small for a full-blown topological inertial-compensation system; the one attached to their autocannon only has to counter one force in one direction, the recoil, and thus can be smaller).

    "Tactical speed", thus, is about .6% c, for humans, and about 1% c for zledo. (Though zled ships, with metric-patching engines, don't fly by expelling a propellant, they don't have an unlimited budget for their flight, either. It takes more power to impart more velocity, so the maximum speeds their engines are capable of are only a bit better than those of human ships; it's the maneuverability/acceleration that's superior.)
  • I was worried that maybe the rebreather I used as a model for the air-recycler on the VAJRA suits was too heavy. SCUBA air-tanks, see, are often weighted, so that they don't force you to float when you'd rather dive (remember, they're full of air). But I looked up rebreathers for mining, firefighting, and mountaineering, and nope, 15 kilos seems to be pretty normal. One firefighting unit was 12.8 kilos, but I doubt it lasts as long as the 15-kilo ones.
  • So a bunch of people say you wouldn't use mechanical counterpressure suits, because they're skintight and therefore look unflattering. One, they're not actually all that skintight (on the outside); MIT's BioSuit is not even as form-fitting as a wetsuit, and people of less than optimal body-configurations do things requiring wetsuits. It's about like a motocross jumpsuit.

    Besides, even if it were true, nobody says you can't wear something over your spacesuit. On Mars for example you'd probably want a fairly heavy cloak—think Jawa cosplay—since Martian dust can get blowing pretty fast—and is also toxic and magnetic and pretty much something from one of those murder-worlds evil Galactic Emperors put prisons on.

    Other places you'd probably have a relatively light protective cover, as an extra defense against punctures (which are no longer deadly but "frostbitten hickey" still hurts).
  • In the 1988 comedy/shotacon movie "Big", at one point, the child-transformed-into-Tom Hanks is shown a toy idea, a building that turns into a robot. His response? "I don't get it. It turns from a building into a robot, right? Well, what's fun about that?"

    What indeed.
  • I didn't mention this at the time, but I think the demise of Almost Human proves that Fox is biased against good science fiction, as the Browncoats claim—as long as that good science fiction has robots in it. (Obviously a bias against good science fiction has nothing to do with Firefly one way or another.)

    Maybe it'll take a third show (Sara Connor Chronicles was the other) to prove the point, but I don't know what it is with them. Maybe there are just budgetary issues? Sarah Connor was probably relatively expensive, and Almost Human was the first sci-fi show in quite some time that didn't look exactly like every other show on TV.
  • Speaking of good sci-fi shows, the Minority Report series shows no little promise. The only real complaint I have is it's a little too insistent with the "See? It's the future! Our future! See? Damn you, see?!" I expect it'll settle down after the first few episodes, though.
  • So it occurs to me that the appropriate term for flying animals of an alien biosphere is not "fliers", but "fowl". The word, cognate with German Vogel, derives from the same root as "fly" and "flight" (there's probably some metathesis involved in the difference between "fgl" and "flg", Germanic languages are into metathesis).

    Likewise "fish" is an appropriate term for the endoskeleton-equipped swimmers; it's not monophyletic on Earth, either, and both its synonyms, "pisces" and "ichthyes", are "a typological, but not a phylogenetic classification". (Incidentally, whales are too fish—specifically Sarcopterygii. Of course, so are giraffes and ocelots and Presbyterian ministers.)
  • An aspect of my setting, with implications for my "future history" that I can't be bothered to flesh out (or rather am content to leave implicit), is that in the 24th century, every ethnicity is referred to by its continent of origin, as Asians are now. I.e., blacks and whites are called Africans and Europeans (yes, even if they're from America). Non-white, non-black Hispanics, and Native Americans, are both referred to as American.

    "Asian" on its own usually, in my setting, means East and Southeast Asians, not people from Central or South Asia (because I'm not British). I think Central and South Asian are called either "Central Asian" and "South Asian", or possibly Middle Easterners and Sub-continentals (leaning toward the former, since it's concise). Also I'm pretty sure North Africans are called "North Africans", although none have come up.

    Yes, that system glosses over mixed-race people. So does ours, but this system has the advantage of not referring to people, many of whom are lighter-skinned than most Navajos, as "black".


Protect Yourself, Or Deal Some Damage

Skyrim line, smiths say it. Good title for a post about weapons and armor.
  • Really got down to brass tacks about my armor. At times it felt like I was crawling over the brass tacks. But now I know pretty much exactly what my armor is made from, both human and zled. The zled armor is a boron-nitride nanotube suit under plates of a metamaterial that, though little more massive than silica, can shift its structure in nanoseconds to meet an attack with the (local) density of osmium and the melting-point of tungsten. In between there's a suit of auxetic foam, like we're currently experimenting with for blast-curtains and EOD suits. Decided zled irregular troops don't wear STF armor, they just wear the auxetic-foam/BN nanotube armor without the metamaterial plates. (One benefit the BN gives is radiation-shielding, especially vs. neutrons.)

    The humans' STF armor is actually nanotube-reinforced polymer textile (somewhat like Kevlar, but not Kevlar—I went with a different kind of polymer, because some of the properties I needed to know don't exist for aramids e.g. they don't melt, they sublimate/disintegrate), soaked in a polyethylene glycol gel with silica in it. As I said, PK special-forces wear only a "union suit" made of the stuff, while the heavier armor also features a cuirass and some limb-plates made of stiffer panels of the same material. The VAJRA powered armor is two-layer, the inner being ferrofluid—nano-scale magnetite powder suspended in PDMS (siloxane)—governed by sensors much like the ones in magnetorheological brakes, but much faster, single-digits of microseconds rather than milliseconds. The outer layer is boron carbide sandwiched with good old-fashioned homogeneous steel; the whole thing, minus power-plant, environment-system, and power-lifting system (i.e. just the armor itself) weighs about 18.5 kilos.
  • While I was torturing myself doing this, I came across a way for the zledo to tune their lasers: one of the things you can do with optical metamaterials is tunable filters. One paper I found involved a filter tunable over a range of 3,650 nanometers, although it started at near-infrared and went into mid-infrared, whereas what I need is near-infrared to near-UV—but that's a range only 770 nanometers across, so once one has the tech to tune to UV at all, in principle tuning to near-IR is relatively simple.
  • Other things I came across doing this? Nanocellulose, which is extracted from cyanobacteria or wood pulp, and is clear, stronger than Kevlar, and electrically conductive. They're thinking of using it in organic LED displays that can be rolled up, certain window applications, and it can also be used as, e.g., food thickener, because it's still just "dietary fiber". Its one weakness? Still cellulose, and not very dense, therefore it soaks up moisture—even from air—and puffs up. At the very least, serious waterproofing is required.

    I think the humans make windows and maybe display-screens out of aluminum oxynitride...which is also known as "transparent aluminum". You can get better performance from 4.1 centimeters of AlON than from 9.4 centimeters of bulletproof glass—the AlON will stop .50 BMG at that thickness (presumably only from a certain distance), glass won't—so it'd obviously be a popular choice for e.g. VIP vehicles.

    A substance that I think zledo and possibly also humans put as a coating on weapons to let them cut through practically anything, is n-tert-butoxycarbonyl-protected diphenylalanine, or BOC-protected diphenylalanine to its friends. It's apparently as strong as Kevlar and can only be scratched by diamond—and in itself it's clear (but pH dependent, apparently, so you probably don't want to make your whole weapon out of it—"got to periodically re-apply the coating" vs. "the whole blade dissolved").
  • It occurs to me that, if you're going to use Raufoss-style HEIAP rounds in your coil vulcan, while only firing at the muzzle velocity of modern .50 BMG, then why not use .50 BMG and leave the coil part at home?

    So now the coil vulcans still shoot .50 BMG Raufoss-type HEIAP rounds, but shoot them at a muzzle velocity of 1,578.445 meters per second—giving them the same muzzle-energy as 20 millimeter, before the HEIAP is factored in, i.e. basically giving the same performance as 20 millimeter HEIAP rounds from a 13-millimeter package.

    Assuming it scales linearly, that muzzle-velocity means power-requirement per shot of 53,867.5675 joules, which, with silicon-air batteries, means that 1,000 shots uses a silicon-air battery massing only 1.052 kilograms.
  • To calculate the total weight of a VAJRA suit, we add in the weight of the power-assist exosuit and an air-recycler. The Warrior Web weighs about 9 kilograms, so we'll say the VAJRA version—which will let you flip, though not throw, a car—is the same. The lightest scuba rebreathers I can find weigh 15 kilos; while what a VAJRA suit has is not just a rebreather but a true air-recycler, that's a good figure for the weight we're talking about.

    That, of course, brings the total mass of the suit to 42.5 kilos, the weight of a twelve-and-a-half-year-old. The exosuit, of course, cancels that out, and the weight also makes it a lot easier to, e.g., stand up to the recoil of your "muzzle energy (therefore recoil) of a 20-millimeter" coil-vulcan. It also makes it slightly harder for a zled to just fling you like a rag-doll, though not enough harder that it actually prevents it ("All right, we'll goad this guy into tossing us like unwanted toys. After eight or nine of us, he'll be too tired to keep fighting!")
  • This article on coilguns and railguns says, about using them for anti-missile CIWSs, quote:
    If incoming round interception can be accomplished with good reliability, it will make armored vehicles as obsolete as knights on horseback.
    Can you count the errors in that sentence? I see at least two. One is, "good reliability" is not the same thing as "100% reliability". We've had missile-interceptor CIWSs on ships for decades, we still armor them.

    The second is, knights in armor weren't rendered obsolete because of something that shot down bullets; they were rendered obsolete because bullets became good enough that wearing enough armor to stop them became prohibitively heavy. Taking the risk of not having armor rather than have to slog around 50 pounds of steel, was the option they went with; there was no alternative to armor (except "run for cover more quickly than armor permits") that did it.

    Besides, what if your enemy decides that, indeed, anti-tank missiles aren't worth the effort, because of your electromagnetic CIWS...and then he shoots your vehicle with a laser, or with an EM gun much like the one your CIWS uses (e.g., a 30 mm coil version of the A-10's GAU-8 Avenger, which is also used on the Goalkeeper CIWS)? Boom (literally)—bet you wish you'd had some armor on that slag-heap that used to be a vehicle.
  • I realize, of course, that recoil force ("felt recoil", anyway) is a fraction of actual muzzle-energy, but, on a spaceship at least, it isn't all that different. Recoil on a planet goes down into the ground through the shooter's body, or through the mounting of a mounted gun, but recoil on a spaceship has nowhere to go. (The same is also true of airplanes; certain large autocannons—the Gsh-6-30 on the MiG-27, notably—need special mountings, and still cause unpleasant noise and vibrations, the latter of which can even damage fuel tanks, avionics, and landing lights.)

    Another factor is that rail- and coilguns are quite likely to have more recoil forces than firearms, since their "ejecta" consist of a bullet and a negligible mass of plasma, whereas a firearm is ejecting all the gases produced by burning its propellant, along with the bullet. You can put vents on the top or sides of a firearm's muzzle to let some of the ejecta escape at a different angle; that's not possible on an electromagnetic gun. (Maybe some kind of counterweight piston like in the AEK-971, self-contained—maybe connected directly to the bullet's motion down the barrel—rather than using propellant gases?)
  • Recall, please, that the reasonable distance for space-combat is one light-second, which is just a bit under 300,000 kilometers. How to design a space missile? Let's start by giving it a dry mass equal to the launch-mass of the biggest air-to-air missile ever, the Soviet K-100 series, since those 750 kilograms are going to be necessary to hold our 600-kilo magnetic-confinement fusion rocket. Then give it a mass-ratio equal to that of the AMRAAM (19:11, given its Isp of 254 seconds and cruise speed of Mach 4—I don't think that's a national-security issue).

    That mass-ratio, coupled with MC fusion's 8,000,000 meters per second exhaust velocity, results in a delta-v of approximately 1.5% (1.4678%) the speed of light. That can cross a light-second in 68.13 seconds, or 4,400.37 kilometers in one second flat. A direct hit of an entirely-empty missile, at that speed, hits with the force of a 1.74 megaton nuke; since the most space available for the warhead is 136 kilos (if it scales like the KS-172), the actual explosive (not counting the kinetic kill—you don't make space-missiles dependent on direct hits), and the maximum achievable in a nuke is 6 megatons per megagram, the explosive yield of such a missile is 816 kilotons, around the yield of Soviet RT-2PM Topol ICBMs.